Estimating biomass of barley using crop surface models (CSMs) derived from UAV-based RGB imaging

573Citations
Citations of this article
729Readers
Mendeley users who have this article in their library.

Abstract

Crop monitoring is important in precision agriculture. Estimating above-ground biomass helps to monitor crop vitality and to predict yield. In this study, we estimated fresh and dry biomass on a summer barley test site with 18 cultivars and two nitrogen (N)-treatments using the plant height (PH) from crop surface models (CSMs). The superhigh resolution, multi-temporal (1 cm/pixel) CSMs were derived from red, green, blue (RGB) images captured from a small unmanned aerial vehicle (UAV). Comparison with PH reference measurements yielded an R2 of 0.92. The test site with different cultivars and treatments was monitored during "Biologische Bundesanstalt, Bundessortenamt und CHemische Industrie" (BBCH) Stages 24-89. A high correlation was found between PH from CSMs and fresh biomass (R2 = 0.81) and dry biomass (R2 = 0.82). Five models for above-ground fresh and dry biomass estimation were tested by cross-validation. Modelling biomass between different N-treatments for fresh biomass produced the best results (R2 = 0.71). The main limitation was the influence of lodging cultivars in the later growth stages, producing irregular plant heights. The method has potential for future application by non-professionals, i.e., farmers.

Cite

CITATION STYLE

APA

Bendig, J., Bolten, A., Bennertz, S., Broscheit, J., Eichfuss, S., & Bareth, G. (2014). Estimating biomass of barley using crop surface models (CSMs) derived from UAV-based RGB imaging. Remote Sensing, 6(11), 10395–10412. https://doi.org/10.3390/rs61110395

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free