Large-eddy simulations are made for the canonical Ekman layer problem of a steady wind above a uniformly rotating, constant-density ocean. The focus is on the influence of surface gravity waves: namely, the wave-averaged Stokes-Coriolis and Stokes-vortex forces and parameterized wave breaking for momentum and energy injection. The wave effects are substantial: the boundary layer is deeper, the turbulence is stronger, and eddy momentum flux is dominated by breakers and Langmuir circulations with a vertical structure inconsistent with both the conventional logarithmic layer and eddy viscosity relations. The surface particle mean drift is dominated by Stokes velocity with Langmuir circulations playing a minor role. Implications are assessed for parameterization of the mean velocity profile in the Ekman layer with wave effects by exploring several parameterization ideas. The authors find that the K-profile parameterization (KPP) eddy viscosity is skillful for the interior of the Ekman layer with wave-enhanced magnitude and depth scales. Furthermore, this parameterization form is also apt in the breaker and Stokes layers near the surface when it is expressed as a Lagrangian eddy viscosity (i.e., turbulent Reynolds stress proportional to vertical shear of the Lagrangian mean flow, inclusive of Stokes drift) with a derived eddy-viscosity shape and with a diagnosed vertical profile of a misalignment angle between Reynolds stress and Lagrangian mean shear. © 2012 American Meteorological Society.
CITATION STYLE
Mcwilliams, J. C., Huckle, E., Liang, J. H., & Sullivan, P. P. (2012). The wavy ekman layer: Langmuir circulations, breaking waves, and reynolds stress. Journal of Physical Oceanography, 42(11), 1793–1816. https://doi.org/10.1175/JPO-D-12-07.1
Mendeley helps you to discover research relevant for your work.