Efficient water oxidation catalyzed by homogeneous cationic cobalt porphyrins with critical roles for the buffer base

319Citations
Citations of this article
219Readers
Mendeley users who have this article in their library.

Abstract

A series of cationic cobalt porphyrins was found to catalyze electrochemical water oxidation to O2 efficiently at room temperature in neutral aqueous solution. Co-5,10,15,20-tetrakis-(1,3- dimethylimidazolium- 2-yl)porphyrin, with a highly electron-deficient meso-dimethylimidazolium porphyrin, was the most effective catalyst. The O2 formation rate was 170 nmol cm-2 min-1 (kobs = 1.4 × 103 s-1) with a Faradaic efficiency near 90%. Mechanistic investigations indicate the generation of a CoIV-O porphyrin cation radical as the reactive oxidant, which has accumulated two oxidizing equivalents above the CoIII resting state of the catalyst. The buffer base in solution was shown to play several critical roles during the catalysis by facilitating both redox-coupled proton transfer processes leading to the reactive oxidant and subsequent O-O bond formation. More basic buffer anions led to lower catalytic onset potentials, extending below 1 V. This homogeneous cobalt-porphyrin system was shown to be robust under active catalytic conditions, showing negligible decomposition over hours of operation. Added EDTA or ion exchange resin caused no catalyst poisoning, indicating that cobalt ions were not released from the porphyrin macrocycle during catalysis. Likewise, surface analysis by energy dispersive X-ray spectroscopy of the working electrodes showed no deposition of heterogeneous cobalt films. Taken together, the results indicate that Co-5,10,15,20-tetrakis-( 1,3-dimethylimidazolium-2-yl)porphyrin is an efficient, homogeneous, single-site water oxidation catalyst.

Cite

CITATION STYLE

APA

Wang, D., & Groves, J. T. (2013). Efficient water oxidation catalyzed by homogeneous cationic cobalt porphyrins with critical roles for the buffer base. Proceedings of the National Academy of Sciences of the United States of America, 110(39), 15579–15584. https://doi.org/10.1073/pnas.1315383110

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free