Background: Nicotine is a stimulant and potent parasympathomimetic alkaloid that accounts for 96–98% of alkaloid content. A reduction in the amount of nicotine in cigarettes to achieve a non-addictive level is necessary. We investigated whether replacing tobacco root with eggplant by grafting can restrict nicotine biosynthesis and produce tobacco leaves with ultra-low nicotine content, and analyzed the gene expression differences induced by eggplant grafting. Results: The nicotine levels of grafted tobacco leaves decreased dramatically. The contents of nornicotine, anabasine, NNN, NNK, NAT, total TSNAs and the nicotine of mainstream cigarette smoke decreased, and the contents of amino acids and the precursors of alkaloids increased in grafted tobacco. Eggplant grafting resulted in the differential expression of 440 genes. LOC107774053 had higher degrees in two PPI networks, which were regulated by LOC107802531 and LOC107828746 in the TF-target network. Conclusions: Replacing tobacco root with eggplant by grafting can restrict nicotine biosynthesis and produce tobacco leaves with ultra-low or zero nicotine content. The differential expression of LOC107774053 may be associated with eggplant grafting.
CITATION STYLE
Ren, M., Zhang, M., Yang, H., & Shi, H. (2020). Reducing the nicotine content of tobacco by grafting with eggplant. BMC Plant Biology, 20(1). https://doi.org/10.1186/s12870-020-02459-4
Mendeley helps you to discover research relevant for your work.