A positive mechanobiological feedback loop controls bistable switching of cardiac fibroblast phenotype

22Citations
Citations of this article
29Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Cardiac fibrosis is associated with activation of cardiac fibroblasts (CFs), a pathological, phenotypic transition that is widely believed to be irreversible in the late stages of disease development. Sensing of a stiffened mechanical environment through regulation of integrin-based adhesion plaques and activation of the Piezo1 mechanosensitive ion channel is known to factor into this transition. Here, using integrated in vitro and in silico models, we discovered a mutually reinforcing, mechanical positive feedback loop between integrin β1 and Piezo1 activation that forms a bistable switch. The bistable switch is initiated by perturbations in matrix elastic modulus that amplify to trigger downstream signaling involving Ca2+ and YAP that, recursively, leads fibroblasts to further stiffen their environment. By simultaneously interfering with the newly identified mechanical positive feedback loop and modulating matrix elastic modulus, we reversed markers of phenotypical transition of CF, suggesting new therapeutic targets for fibrotic disease.

Cite

CITATION STYLE

APA

Niu, L., Cheng, B., Huang, G., Nan, K., Han, S., Ren, H., … Xu, F. (2022). A positive mechanobiological feedback loop controls bistable switching of cardiac fibroblast phenotype. Cell Discovery, 8(1). https://doi.org/10.1038/s41421-022-00427-w

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free