The development of a whole new class of industrial agents, such as biologically based nanomaterials and viral vectors, has raised many challenges for their large-scale manufacture, principally due to the lack of essential physical data and bioprocessing knowledge. A new example is the promise of filamentous bacteriophages and their derivatives. As a result, there is now an increasing need for the establishment of strong biochemical engineering foundations to serve as a guide for future manufacture. This article investigates the effect of high-energy fluid flow on filamentous bacteriophage M13 to determine its robustness for large-scale processing. By the application of well-understood ultra scale-down predictive techniques, the viability of bacteriophage M13 was studied as a measure of its robustness and as a function of energy dissipation rate and fluid conditions. These experiments suggested that despite being perceived as a relatively fragile molecule in the literature, bacteriophage M13 should tolerate processing conditions in existing large-scale equipment designs. No loss of viability was noted up to a maximum energy dissipation rate of 2.9×106Wkg-1. Furthermore, significant losses above this threshold only occurred over periods well in excess of the exposure times expected in a bioprocess environment. Filamentous bacteriophages may therefore be regarded as a viable process material for industrial applications. © 2011 Wiley Periodicals, Inc.
CITATION STYLE
Branston, S., Stanley, E., Ward, J., & Keshavarz-Moore, E. (2011, June). Study of robustness of filamentous bacteriophages for industrial applications. Biotechnology and Bioengineering. https://doi.org/10.1002/bit.23066
Mendeley helps you to discover research relevant for your work.