Targeting WASF3 signaling in metastatic cancer

14Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

Abstract

Increasing evidence indicates that cancer metastasis is regulated by specific genetic pathways independent of those controlling tumorigenesis and cancer growth. WASF3, a Wiskott-Aldrich syndrome protein family member, appears to play a major role not only in the regulation of actin cytoskeleton dynamics but also in cancer cell invasion/metastasis. Recent studies have highlighted that WASF3 is a master regulator and acts as a pivotal scaffolding protein, bringing the various components of metastatic signaling complexes together both spatially and temporally. Herein, targeting WASF3 at the levels of transcription, protein stability, and phosphorylation holds great promise for metastasis suppression, regardless of the diverse genetic backgrounds associated with tumor development. This review focuses on the critical and distinct contributions of WASF3 in the regulation of signal pathways promoting cancer cell invasion and metastasis.

Cite

CITATION STYLE

APA

Loveless, R., & Teng, Y. (2021). Targeting WASF3 signaling in metastatic cancer. International Journal of Molecular Sciences, 22(2), 1–14. https://doi.org/10.3390/ijms22020836

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free