A comparative pO2 probe and [18F]-fluoro-azomycinarabino-furanoside ([18F]FAZA) PET study reveals anesthesia-induced impairment of oxygenation and perfusion in tumor and muscle

16Citations
Citations of this article
33Readers
Mendeley users who have this article in their library.

Abstract

Tumor hypoxia can be identified by [18F]FAZA positron emission tomography, or invasively using oxygen probes. The impact of anesthetics on tumor hypoxia remains controversial. The aim of this comprehensive study was to investigate the impact of isoflurane and ketamine/xylazine anesthesia on [18F]FAZA uptake and partial oxygen pressure (pO2) in carcinoma and muscle tissue of air- and oxygen-breathing mice. Methods: CT26 colon carcinoma-bearing mice were anesthetized with isoflurane (IF) or ketamine/xylazine (KX) while breathing air or oxygen (O2). We performed 10 min static PET scans 1 h, 2 h and 3 h after [18F]FAZA injection and calculated the [18F]FAZA-uptake and tumorto-muscle ratios (T/M). In another experimental group, we placed a pO2 probe in the tumor as well as in the gastrocnemius muscle to measure the pO2 and perfusion. Results: Ketamine/xylazine-anesthetized mice yielded up to 3.5-fold higher T/M-ratios compared to their isoflurane-anesthetized littermates 1 h, 2 h and 3 h after [18F]FAZA injection regardless of whether the mice breathed air or oxygen (3 h, KX-air: 7.1 vs. IF-air: 1.8, p = 0.0001, KX-O2: 4.4 vs. IF-O2: 1.4, p < 0.0001). The enhanced T/M-ratios in ketamine/xylazine-anesthetized mice were mainly caused by an increased [18F]FAZA uptake in the carcinomas. Invasive pO2 probe measurements yielded enhanced intra-tumoral pO2 values in air- and oxygen-breathing ketamine/xylazine-anesthetized mice compared to isoflurane-anesthetized mice (KX-air: 1.01 mmHg, IF-air: 0.45 mmHg; KX-O2 9.73 mmHg, IF-O2: 6.25 mmHg). Muscle oxygenation was significantly higher in air-breathing isoflurane-anesthetized (56.9 mmHg) than in ketamine/xylazine-anesthetized mice (33.8 mmHg, p = 0.0003). Conclusion: [18F]FAZA tumor uptake was highest in ketamine/xylazine-anesthetized mice regardless of whether the mice breathed air or oxygen. The generally lower [18F]FAZA whole-body uptake in isoflurane-anesthetized mice could be due to the higher muscle pO2-values in these mice compared to ketamine/xylazine-anesthetized mice. When performing preclinical in vivo hypoxia PET studies, oxygen should be avoided, and ketamine/xylazine-anesthesia might alleviate the identification of tumor hypoxia areals.

Cite

CITATION STYLE

APA

Mahling, M., Fuchs, K., Thaiss, W. M., Maier, F. C., Feger, M., Bukala, D., … Kneilling, M. (2015). A comparative pO2 probe and [18F]-fluoro-azomycinarabino-furanoside ([18F]FAZA) PET study reveals anesthesia-induced impairment of oxygenation and perfusion in tumor and muscle. PLoS ONE, 10(4). https://doi.org/10.1371/journal.pone.0124665

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free