Manufacturing and characterization of anisotropic membranes for micro air vehicles

0Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.
Get full text

Abstract

This paper presents a solution for the production process of a anisotropic polymeric membrane developed for micro air vehicle (MAV) wings, and validates numerical models of the composite membrane with mechanical testing. The anisotropic properties of the membrane are achieved through consideration of material selection, fiber ratio, fiber pretension, and void formation in a spandex-fiber reinforced silicone-matrix. Direct analysis and composites micromechanics equations are used to model the composite membrane with the ability to predict material properties and response under various loading conditions including pressure distributions. Digital image correlation is used in conjunction with tensile tests and “hydrostatic” pressure differential tests to characterize the response of the membrane to various loading conditions. The non-isotropic properties of the composite membrane result in deflection fields that vary with respect to direction under a uniform pressure gradient across the membrane. With further development of the manufacturing process, spandex reinforced silicone membranes yield promising results as a future MAV membrane material.

Cite

CITATION STYLE

APA

Wilcox, J., Osterberg, N. B., Albertani, R., Alioli, M., Morandini, M., & Masarati, P. (2016). Manufacturing and characterization of anisotropic membranes for micro air vehicles. In Conference Proceedings of the Society for Experimental Mechanics Series (Vol. 7, pp. 19–29). Springer New York LLC. https://doi.org/10.1007/978-3-319-21762-8_3

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free