Throughout the epoch of reionization, the most luminous Lyα emitters are capable of ionizing their own local bubbles. The CR7 galaxy at z ≈ 6.6 stands out for its combination of exceptionally bright Lyα and He II 1640 Å line emission but absence of metal lines. As a result CR7 may be the first viable candidate host of a young primordial starburst or direct collapse black hole. High-resolution spectroscopy reveals a +160 km s-1 velocity offset between the Lyα and He II line peaks while the spatial extent of the Lyα emitting region is ~16 kpc. The observables are indicative of an outflow signature produced by a strong central source. We present one-dimensional radiation-hydrodynamics simulations incorporating accurate Lyα feedback and ionizing radiation to investigate the nature of the CR7 source. We find that a Population III star cluster with 105 K blackbody emission ionizes its environment too efficiently to generate a significant velocity offset. However, a massive black hole with a non-thermal Compton-thick spectrum is able to reproduce the Lyα signatures as a result of higher photon trapping and longer potential lifetime. For both sources, Lyα radiation pressure turns out to be dynamically important.
CITATION STYLE
Smith, A., Bromm, V., & Loeb, A. (2016). Evidence for a direct collapse black hole in the Lyman α source CR7. Monthly Notices of the Royal Astronomical Society, 460(3), 3143–3151. https://doi.org/10.1093/mnras/stw1129
Mendeley helps you to discover research relevant for your work.