Winds in the Middle Cloud Deck From the Near-IR Imaging by the Venus Monitoring Camera Onboard Venus Express

24Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

For more than 8 years the Venus Monitoring Camera (VMC) onboard the Venus Express orbiter performed continuous imaging of the Venus cloud layer in UV, visible and near-IR filters. We applied the correlation approach to sequences of the near-IR images at 965 nm to track cloud features and determine the wind field in the middle and lower cloud (49–57 km). From the VMC images that spanned from December of 2006 through August of 2013 we derived zonal and meridional components of the wind field. In low-to-middle latitudes (5–65°S) the velocity of the retrograde zonal wind was found to be 68–70 m/s. The meridional wind velocity slowly decreases from peak value of +5.8 ± 1.2 m/s at 15°S to 0 at 65–70°S. The mean meridional speed has a positive sign at 5–65°S suggesting equatorward flow. This result, together with the earlier measurements of the poleward flow at the cloud tops, indicates the presence of a closed Hadley cell in the altitude range 55–65 km. Long-term variations of zonal and meridional velocity components were found during 1,200 Earth days of observation. At 20° ± 5°S the zonal wind speed increases from −67.18 ± 1.81 m/s to −77.30 ± 2.49 m/s. The meridional wind gradually increases from +1.30 ± 1.82 m/s to +8.53 ± 2.14 m/s. Following Bertaux et al. (2016) we attribute this long-term trend to the influence from the surface topography on the dynamical process in the atmosphere via the upward propagation of gravity waves that became apparent in the VMC observations due to slow drift of the Venus Express orbit over Aphrodite Terra.

Cite

CITATION STYLE

APA

Khatuntsev, I. V., Patsaeva, M. V., Titov, D. V., Ignatiev, N. I., Turin, A. V., Fedorova, A. A., & Markiewicz, W. J. (2017). Winds in the Middle Cloud Deck From the Near-IR Imaging by the Venus Monitoring Camera Onboard Venus Express. Journal of Geophysical Research: Planets, 122(11), 2312–2327. https://doi.org/10.1002/2017JE005355

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free