Estimating diffuse recharge of precipitation is fundamental to assessing groundwater sustainability. Diffuse recharge is also the process through which climate and climate change directly affect groundwater. In this study, we evaluated diffuse recharge over the conterminous United States simulated by a suite of land surface models (LSMs) that were forced using a common set of meteorological input data. Simulated annual recharge exhibited spatial patterns that were similar among the LSMs, with the highest values in the eastern United States and Pacific Northwest. However, the magnitudes of annual recharge varied significantly among the models and were associated with differences in simulated ET, runoff, and snow. Evaluation against two independent datasets did not answer the question of whether the ensemble mean performs the best, due to inconsistency between those datasets. The amplitude and timing of seasonal maximum recharge differed among the models, influenced strongly by model physics governing deep soil moisture drainage rates and, in cold regions, snowmelt. Evaluation using in situ soil moisture observations suggested that true recharge peaks 1–3 months later than simulated recharge, indicating systematic biases in simulating deep soil moisture. However, recharge from lateral flows and through preferential flows cannot be inferred from soil moisture data, and the seasonal cycle of simulated groundwater storage actually compared well with in situ groundwater observations. Long-term trends in recharge were not consistently correlated with either precipitation trends or temperature trends. This study highlights the need to employ dynamic flow models in LSMs, among other improvements, to enable more accurate simulation of recharge.
CITATION STYLE
Li, B., Rodell, M., Peters-Lidard, C., Erlingis, J., Kumar, S., & Mocko, D. (2021). Groundwater recharge estimated by land surface models: An evaluation in the conterminous United States. Journal of Hydrometeorology, 22(2), 499–522. https://doi.org/10.1175/JHM-D-20-0130.1
Mendeley helps you to discover research relevant for your work.