Iris identification is a well-known technology used to detect striking biometric identification procedures for recognizing human beings based on physical behaviour. The texture of the iris is unique and its anatomy varies from individual to individual. As we know, the physical features of human beings are unique, and they never change; this has led to a significant development in the field of iris recognition. Iris recognition tends to be a reliable domain of technology as it inherits the random variation of the data. In the proposed study of approach, we have designed and implemented a framework using various subsystems, where each phase relates to the other iris recognition system, and these stages are discussed as segmentation, normalisation, and feature encoding. The study is implemented using MATLAB where the results are outcast using the rapid application development (RAD) approach. We have applied the RAD domain, as it has an excellent computing power to generate expeditious results using complex coding, image processing toolbox, and high-level programing methodology. Further, the performance of the technology is tested on two informational groups of eye images MMU Iris database, CASIA V1, CASIA V2, MICHE I, MICHE II iris database, and images captured by iPhone camera and Android phone. The emphasis on the current study of approach is to apply the proposed algorithm to achieve high performance with less ideal conditions.
CITATION STYLE
Mohammed, R. T., Kaur, H., Alankar, B., & Chauhan, R. (2022). Recognition of human Iris for biometric identification using Daugman’s method. IET Biometrics, 11(4), 304–313. https://doi.org/10.1049/bme2.12074
Mendeley helps you to discover research relevant for your work.