Geodesic Forests

3Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

Abstract

Together with the curse of dimensionality, nonlinear dependencies in large data sets persist as major challenges in data mining tasks. A reliable way to accurately preserve nonlinear structure is to compute geodesic distances between data points. Manifold learning methods, such as Isomap, aim to preserve geodesic distances in a Riemannian manifold. However, as manifold learning algorithms operate on the ambient dimensionality of the data, the essential step of geodesic distance computation is sensitive to high-dimensional noise. Therefore, a direct application of these algorithms to high-dimensional, noisy data often yields unsatisfactory results and does not accurately capture nonlinear structure. We propose an unsupervised random forest approach called geodesic forests (GF) to geodesic distance estimation in linear and nonlinear manifolds with noise. GF operates on low-dimensional sparse linear combinations of features, rather than the full observed dimensionality. To choose the optimal split in a computationally efficient fashion, we developed Fast-BIC, a fast Bayesian Information Criterion statistic for Gaussian mixture models. We additionally propose geodesic precision and geodesic recall as novel evaluation metrics that quantify how well the geodesic distances of a latent manifold are preserved. Empirical results on simulated and real data demonstrate that GF is robust to high-dimensional noise, whereas other methods, such as Isomap, UMAP, and FLANN, quickly deteriorate in such settings. Notably, GF is able to estimate geodesic distances better than other approaches on a real connectome dataset.

Cite

CITATION STYLE

APA

Madhyastha, M., Li, G., Strnadová-Neeley, V., Browne, J., Vogelstein, J. T., Burns, R., & Priebe, C. E. (2020). Geodesic Forests. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 513–523). Association for Computing Machinery. https://doi.org/10.1145/3394486.3403094

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free