Temperature distribution in friction stir spot welding of aluminium alloy based on finite element analysis

4Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Friction stir spot welding (FSSW) as the solid-state welding has been expanded to be used in various materials and many applications. The significant issue in FSSW is the existence of porosity or wormholes, leads to welding failure. One reason is due to imperfect heat generation leads to temperature distribution during FSSW effect to uncertain weldment formation. This is mainly influenced by improper parameters selection. In this study, the temperature distribution in the weld zones is investigated using finite element analysis via computer numerical simulation of Altair Hyperworks software with respect to parameters i.e. spindle speed, tool plunge depth, and tool dwell time. In the simulation, tool plunge depth and tool dwell time is set constant, but spindle speed was varied from 1400, 1500, and 1600 rpm respectively. Based on the results found that at a spindle speed of 1400 rpm was produced max temperature in the weld zone at 540 °C. Meanwhile, at 1500 rpm increased the temperature at 596 °C. At 1600 rpm reached its highest temperature at 650 °C. The results show that increasing tool rotational speed, at a constant tool plunge depth and constant tool dwell time will increase the amount of temperature distribution in the weld-zones. It is concluded that the suitable temperature distribution required in FSSW is 540 °C represented the solid-state joining process provided by spindle speed of 1400 rpm.

Cite

CITATION STYLE

APA

Armansyah, Chie, H. H., Saedon, J., & Adenan, S. (2020). Temperature distribution in friction stir spot welding of aluminium alloy based on finite element analysis. In IOP Conference Series: Earth and Environmental Science (Vol. 426). Institute of Physics Publishing. https://doi.org/10.1088/1755-1315/426/1/012127

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free