Background: Infection of rabies virus (RABV) causes central nervous system (CNS) dysfunction and results in high mortality in human and animals. However, it is still unclear whether and how CNS inflammation and immune response contribute to RABV infection. Methods: Suckling mice were intracerebrally infected with attenuated RABV aG and CTN strains, followed by examination of chemokine or cytokine production, inflammatory cell infiltration and neuron apoptosis in the brain. Furthermore, the suckling mice and adult mice that were intracerebrally infected with aG and the adult mice that were intramuscularly infected with street RABV HN10 were treated with CCL5 antagonist (Met-CCL5) daily beginning on day 2 postinfection. The survival rates and inflammation responses in the CNS of these mice were analyzed. Results: Excessive CCL5 in the CNS was associated with CNS dysfunction, inflammation, and macrophage or lymphocyte infiltration after attenuated or street RABV infection. Administration of exogenous CCL5 induced excessive infiltration of immune cells into the CNS and enhanced inflammatory chemokine and cytokine production. Met-CCL5 treatment significantly prolonged survival time of the suckling mice inoculated with aG and adult mice infected with aG and HN10. Conclusions: These results suggest that CCL5 in the CNS is a key regulator involved in inducing rabies encephalomyelitis. Furthermore, treatment with the CCL5 antagonist Met-CCL5 prolongs survival time of the mice infected with attenuated or street RABVs, which might represent a novel therapeutic strategy to ameliorate RABV infection.
CITATION STYLE
Huang, Y., Jiao, S., Tao, X., Tang, Q., Jiao, W., Xiao, J., … Wang, H. (2014). Met-CCL5 represents an immunotherapy strategy to ameliorate rabies virus infection. Journal of Neuroinflammation, 11(1). https://doi.org/10.1186/s12974-014-0146-y
Mendeley helps you to discover research relevant for your work.