Towards p-Adaptive Spectral/hp Element Methods for Modelling Industrial Flows

7Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.
Get full text

Abstract

There is an increasing requirement from both academia and industry for high-fidelity flow simulations that are able to accurately capture complicated and transient flow dynamics in complex geometries. Coupled with the growing availability of high-performance, highly parallel computing resources, there is therefore a demand for scalable numerical methods and corresponding software frameworks which can deliver the next-generation of complex and detailed fluid simulations to scientists and engineers in an efficient way. In this article we discuss recent and upcoming advances in the use of the spectral/hp element method for addressing these modelling challenges. To use these methods efficiently for such applications, is critical that computational resolution is placed in the regions of the flow where it is needed most, which is often not known a priori. We propose the use of spatially and temporally varying polynomial order, coupled with appropriate error estimators, as key requirements in permitting these methods to achieve computationally efficient high-fidelity solutions to complex flow problems in the fluid dynamics community.

Cite

CITATION STYLE

APA

Moxey, D., Cantwell, C. D., Mengaldo, G., Serson, D., Ekelschot, D., Peiró, J., … Kirby, R. M. (2017). Towards p-Adaptive Spectral/hp Element Methods for Modelling Industrial Flows. In Lecture Notes in Computational Science and Engineering (Vol. 119, pp. 63–79). Springer Verlag. https://doi.org/10.1007/978-3-319-65870-4_4

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free