Correction of elastic anisotropy in williamson-hall plots by diffraction young's modulus and direct fitting method

25Citations
Citations of this article
42Readers
Mendeley users who have this article in their library.

Abstract

It is known that the micro-strain in cold worked iron can be evaluated by the classical Williamson-Hall method using the three data of diffraction peaks: (110), (211) and (220). It is not clarified that the obtained value gives the true micro-strain or not. In addition, the accuracy of analysis is not so high because the diffraction strength from (220) plane is generally very weak. In this paper, three methods, i.e. classical Williamson-Hall method, Diffraction Young's Modulus Correction method and Direct Fitting method, ware attempted to reconfirm the reasonability of the classical Williamson-Hall method and to estimate accurate values of the parameter and the micro-strain in the Williamson-Hall equation. The results obtained are as follows: 1) Elastic anisotropy in the Williamson-Hall plots is corrected using the parameter which relates to the values of diffraction Young's modulus. 2) The optimal values of parameter can be determined by the Direct Fitting method, which can be used to determine the timely orientation-dependent diffraction Young's modulus (E*hkl) in cold worked specimens. 3) It was confirmed that the classical Williamson-Hall method can generally give reliable values for the parameter and the micro-strain . 4) No large difference is found for the values of micro-strain from the three methods. 5) There is a clear linearity between the micro-strain and yield stress in cold rolled iron specimens.

Cite

CITATION STYLE

APA

Takaki, S., Jiang, F., Masumura, T., & Tsuchiyama, T. (2018). Correction of elastic anisotropy in williamson-hall plots by diffraction young’s modulus and direct fitting method. ISIJ International. Iron and Steel Institute of Japan. https://doi.org/10.2355/isijinternational.ISIJINT-2017-642

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free