Synaptotagmin I is considered to be a Ca2+ sensor for fast vesicle exocytosis. Because Ca2+-dependent vesicle exocytosis persists in synaptotagmin I mutants, there must be additional Ca2+ sensors. Multiple synaptotagmin isoforms co-reside on vesicles, which suggests that other isoforms complement synaptotagmin I function. We found that full downregulation of synaptotagmins I and IX, which co-reside on vesicles in PC12 cells, completely abolished Ca2+-dependent vesicle exocytosis. By contrast, Ca2+-dependent exocytosis persisted in cells expressing only synaptotagmin I or only synaptotagmin IX, which indicated a redundancy in function for these isoforms. Although either isoform was sufficient to confer Ca2+ regulation on vesicle exocytosis, synaptotagmins I and IX conferred faster and slower release rates, respectively, indicating that individual isoforms impart distinct kinetic properties to vesicle exocytosis. The downregulation of synaptotagmin I but not synaptotagmin IX impaired compensatory vesicle endocytosis, which revealed a lack of isoform redundancy and functional specialization of synaptotagmin I for endocytic retrieval.
CITATION STYLE
Lynch, K. L., & Martin, T. F. J. (2007). Synaptotagmins I adn IX function redundantly in regulated exocytosis but not endocytosis in PC12 cells. Journal of Cell Science, 120(4), 617–627. https://doi.org/10.1242/jcs.03375
Mendeley helps you to discover research relevant for your work.