Identifying sensors-based parameters associated with fall risk in community-dwelling older adults: an investigation and interpretation of discriminatory parameters

12Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Falls pose a severe threat to the health of older adults worldwide. Determining gait and kinematic parameters that are related to an increased risk of falls is essential for developing effective intervention and fall prevention strategies. This study aimed to investigate the discriminatory parameter, which lay an important basis for developing effective clinical screening tools for identifying high-fall-risk older adults. Methods: Forty-one individuals aged 65 years and above living in the community participated in this study. The older adults were classified as high-fall-risk and low-fall-risk individuals based on their BBS scores. The participants wore an inertial measurement unit (IMU) while conducting the Timed Up and Go (TUG) test. Simultaneously, a depth camera acquired images of the participants’ movements during the experiment. After segmenting the data according to subtasks, 142 parameters were extracted from the sensor-based data. A t-test or Mann-Whitney U test was performed on the parameters for distinguishing older adults at high risk of falling. The logistic regression was used to further quantify the role of different parameters in identifying high-fall-risk individuals. Furthermore, we conducted an ablation experiment to explore the complementary information offered by the two sensors. Results: Fifteen participants were defined as high-fall-risk individuals, while twenty-six were defined as low-fall-risk individuals. 17 parameters were tested for significance with p-values less than 0.05. Some of these parameters, such as the usage of walking assistance, maximum angular velocity around the yaw axis during turn-to-sit, and step length, exhibit the greatest discriminatory abilities in identifying high-fall-risk individuals. Additionally, combining features from both devices for fall risk assessment resulted in a higher AUC of 0.882 compared to using each device separately. Conclusions: Utilizing different types of sensors can offer more comprehensive information. Interpreting parameters to physiology provides deeper insights into the identification of high-fall-risk individuals. High-fall-risk individuals typically exhibited a cautious gait, such as larger step width and shorter step length during walking. Besides, we identified some abnormal gait patterns of high-fall-risk individuals compared to low-fall-risk individuals, such as less knee flexion and a tendency to tilt the pelvis forward during turning.

References Powered by Scopus

A power primer

34972Citations
11930Readers
Get full text
11315Citations
5533Readers

This article is free to access.

This article is free to access.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Wang, X., Cao, J., Zhao, Q., Chen, M., Luo, J., Wang, H., … Zhao, Y. (2024). Identifying sensors-based parameters associated with fall risk in community-dwelling older adults: an investigation and interpretation of discriminatory parameters. BMC Geriatrics, 24(1). https://doi.org/10.1186/s12877-024-04723-w

Readers' Seniority

Tooltip

Lecturer / Post doc 4

50%

PhD / Post grad / Masters / Doc 3

38%

Researcher 1

13%

Readers' Discipline

Tooltip

Engineering 3

38%

Computer Science 2

25%

Nursing and Health Professions 2

25%

Neuroscience 1

13%

Save time finding and organizing research with Mendeley

Sign up for free