In this paper, we present a novel implementation of an ecosystem simulation. In our previous work, we implemented a 3D environment based on a predator-prey model, but we found that in most cases, regardless of the choice of starting parameters, the simulation quickly led to extinctions. We wanted to achieve system stabilization, long-term operation, and better simulation of reality by incorporating genetic evolution. Therefore we applied the predator-prey model with an evolutional approach. Using the Unity game engine we created and managed a closed 3D ecosystem environment defined by an artificial or real uploaded map. We present some demonstrative runs while gathering data, observing interesting events (such as extinction, sustainability, and behavior of swarms), and analyzing possible effects on the initial parameters of the system. We found that incorporating genetic evolution into the simulation slightly stabilized the system, thus reducing the likelihood of extinction of different types of objects. The simulation of ecosystems and the analysis of the data generated during the simulations can also be a starting point for further research, especially in relation to sustainability. Our system is publicly available, so anyone can customize and upload their own parameters, maps, objects, and biological species, as well as inheritance and behavioral habits, so they can test their own hypotheses from the data generated during its operation. The goal of this article was not to create and validate a model but to create an IT tool for evolutionary researchers who want to test their own models and to present them, for example, as animated conference presentations. The use of 3D simulation is primarily useful for educational purposes, such as to engage students and to increase their interest in biology. Students can learn in a playful way while observing in the graphical scenery how the ecosystem behaves, how natural selection helps the adaptability and survival of species, and what effects overpopulation and competition can have.
CITATION STYLE
Kiss, A., & Pusztai, G. (2022). Using the Unity Game Engine to Develop a 3D Simulated Ecological System Based on a Predator-Prey Model Extended by Gene Evolution. Informatics, 9(1). https://doi.org/10.3390/informatics9010009
Mendeley helps you to discover research relevant for your work.