Hemodynamics challenges for the navigation of medical microbots for the treatment of CVDs

24Citations
Citations of this article
28Readers
Mendeley users who have this article in their library.

Abstract

Microbots have been considered powerful tools in minimally invasive medicine. In the last few years, the topic has been highly studied by researchers across the globe to further develop the capabilities of microbots in medicine. One of many applications of these devices is performing surgical procedures inside the human circulatory system. It is expected that these microdevices traveling along the microvascular system can remove clots, deliver drugs, or even look for specific cells or regions to diagnose and treat. Although many studies have been published about this subject, the experimental influence of microbot morphology in hemodynamics of specific sites of the human circulatory system is yet to be explored. There are numerical studies already considering some of human physiological conditions, however, experimental validation is vital and demands further investigations. The roles of specific hemodynamic variables, the non-Newtonian behavior of blood and its particulate nature at small scales, the flow disturbances caused by the heart cycle, and the anatomy of certain arteries (i.e., bifurcations and tortuosity of vessels of some regions) in the determination of the dynamic performance of microbots are of paramount importance. This paper presents a critical analysis of the state-of-the-art literature related to pulsatile blood flow around microbots.

Cite

CITATION STYLE

APA

Doutel, E., Galindo-Rosales, F. J., & Campo-Deaño, L. (2021, December 1). Hemodynamics challenges for the navigation of medical microbots for the treatment of CVDs. Materials. MDPI. https://doi.org/10.3390/ma14237402

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free