Several recent works have presented image-based methods for creating high-fidelity immersive virtual environments from photographs of real-world scenes. In this paper, we provide a user-centered evaluation of such methods by way of a user study investigating their impact on viewers’ perception of visual realism and sense of presence. In particular, we focus on two specific elements commonly introduced by image-based approaches. First, we investigate the extent to which using dedicated image-based rendering algorithms to render the scene with view-dependent effects (such as specular highlights) causes users to perceive it as being more realistic. Second, we study whether making the scene fade out beyond a fixed volume in 3D space significantly reduces participants’ feeling of being there, examining different sizes for this viewing volume. To provide details on the virtual environment used in the study, we also describe how we recreated a museum gallery for room-scale virtual reality using a custom-built multi-camera rig. The results of our study show that using image-based rendering to render view-dependent effects can effectively enhance the perception of visual realism and elicit a stronger sense of presence, even when it implies constraining the viewing volume to a small range of motion.
CITATION STYLE
de Dinechin, G. D., Paljic, A., & Tanant, J. (2021). Impact of view-dependent image-based effects on perception of visual realism and presence in virtual reality environments created using multi-camera systems. Applied Sciences (Switzerland), 11(13). https://doi.org/10.3390/app11136173
Mendeley helps you to discover research relevant for your work.