Social and policy interest in the modernization and revitalization of the Korean traditional house (Hanok) has increased recently in Korea but its low thermal performance is one of its weaknesses. A feasibility study was conducted to evaluate the suitability of a Phase Change Material (PCM) in a modernized Hanok. The research method involved a test of the heating and cooling load reduction and Predicted Mean Vote (PMV) analysis for human comfort using an Esp-r simulation adopting multi variable PCM types as the building wall composite. The influence of PCMs on reducing the building energy load was assessed as a criterion for upgrading materials and infiltration to the passive house regulation. Compared to the base case, the heating and cooling load reduction ratio were as follows: Case 1 (old-Hanok), 10%; Case 2 (Korean Building Act), 21%; and Case 3 (passive house regulation), 53%. The optimal phase change temperatures of the PCMs were Case 1 (24-26 °C), Case 2 (23-25 °C) and Case 3 (24-26 °C). PMV analysis showed that the use of a PCM can narrow the comfort range and centralize the optimal point. Therefore, the following contents can be presented as the design and material guidelines. First, the optimal PCM temperature can vary according to the combination of materials and local climate. In addition, the infiltration and insulation should be verified and a certain portion of them should be secured. Finally, the addition of insulation to a passive house level should be considered actively using a PCM as a supplement for net zero energy building (nZEB).
CITATION STYLE
Lee, J., & Park, J. (2018). Phase Change Material (PCM) application in a modernized Korean traditional house (Hanok). Sustainability (Switzerland), 10(4). https://doi.org/10.3390/su10040948
Mendeley helps you to discover research relevant for your work.