Xenopus lefty requires proprotein cleavage but not N-linked glycosylation to inhibit nodal signaling

3Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The Nodal and Nodal-related morphogens are utilized for the specification of distinct cellular identity throughout development by activating discrete target genes in a concentration-dependant manner. Lefty is a principal extracellular antagonist involved in the spatiotemporal regulation of the Nodal morphogen gradient during mesendoderm induction. The Xenopus Lefty proprotein contains a single N-linked glycosylation motif in the mature domain and two potential cleavage sites that would be expected to produce long (Xlefty L) and short (XleftyS) isoforms. Here we demonstrate that both isoforms were secreted from Xenopus oocytes, but that XleftyL is the only isoform detected when embryonic tissue was analyzed. In mesoderm induction assays, XleftyL is the functional blocker of Xnr signaling. When secreted from oocytes, vertebrate Lefty molecules were N-linked glycosylated. However, glycan addition was not required to inhibit Xnr signaling and did not influence its movement through the extracellular space. These findings demonstrate that Lefty molecules undergo post-translational modifications and that some of these modifications are required for the Nodal inhibitory function. © 2007 Wiley-Liss, Inc.

Cite

CITATION STYLE

APA

Westmoreland, J. J., Takahashi, S., & Wright, C. V. E. (2007). Xenopus lefty requires proprotein cleavage but not N-linked glycosylation to inhibit nodal signaling. Developmental Dynamics, 236(8), 2050–2061. https://doi.org/10.1002/dvdy.21210

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free