Optimization of metasurfaces under geometrical uncertainty using statistical learning

  • Elsawy M
  • Binois M
  • Duvigneau R
  • et al.
10Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The performance of metasurfaces measured experimentally often discords with expected values from numerical optimization. These discrepancies are attributed to the poor tolerance of metasurface building blocks with respect to fabrication uncertainties and nanoscale imperfections. Quantifying their efficiency drop according to geometry variation are crucial to improve the range of application of this technology. Here, we present a novel optimization methodology to account for the manufacturing errors related to metasurface designs. In this approach, accurate results using probabilistic surrogate models are used to reduce the number of costly numerical simulations. We employ our procedure to optimize the classical beam steering metasurface made of cylindrical nanopillars. Our numerical results yield a design that is twice more robust compared to the deterministic case.

Cite

CITATION STYLE

APA

Elsawy, M. M. R., Binois, M., Duvigneau, R., Lanteri, S., & Genevet, P. (2021). Optimization of metasurfaces under geometrical uncertainty using statistical learning. Optics Express, 29(19), 29887. https://doi.org/10.1364/oe.430409

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free