High purity hydrogen and solid-state byproducts are produced using a proposed plasma-activated aluminum and water reactions approach. These byproducts could be transformed into pure gamma Al2O3 powder material, while hydrogen can be used for electricity generation. Various chemical methods can be used for the synthesis of gamma alumina, but most could result in high levels of remaining impurities. Boehmite is a cost-effective starting material for the production of high-purity Al2O3. Herein, we present a novel method for the synthesis of boehmite and its transformation into high-specific-surface-area γ-alumina. Specifically, this method implicates the direct reaction between distilled water and plasma-treated aluminum powder. The results show the structural and morphological changes of the byproduct of the aluminum/water reaction to boehmite and γ-Al2O3 after a simple heating procedure (at 280 and 500 °C respectively). The high-purity hydrogen produced during the aluminum/water reaction can be used for the high-efficiency and environmentally friendly production of electrical energy.
CITATION STYLE
Urbonavicius, M., Varnagiris, S., Pranevicius, L., & Milcius, D. (2020). Production of gamma alumina using plasma-treated aluminum and water reaction byproducts. Materials, 13(6). https://doi.org/10.3390/ma13061300
Mendeley helps you to discover research relevant for your work.