Upper Bound on the Packing Density of Regular Tetrahedra and Octahedra

18Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Aristotle contended that (regular) tetrahedra tile space, an opinion that remained widespread until it was observed that non-overlapping tetrahedra cannot subtend a solid angle of 4π around a point if this point lies on a tetrahedron edge. From this 15th century argument, we can deduce that tetrahedra do not tile space but, more than 500 years later, we are unaware of any known non-trivial upper bound to the packing density of tetrahedra. In this article, we calculate such a bound. To this end, we show the existence, in any packing of regular tetrahedra, of a set of disjoint spheres centered on tetrahedron edges, so that each sphere is not fully covered by the packing. The bound on the amount of space that is not covered in each sphere is obtained in a recursive way by building on the solid angle argument. The argument can be readily modified to apply to other polyhedra. The resulting lower bound on the fraction of empty space in a packing of regular tetrahedra is 2. 6...×10-25 and reaches 1. 4...×10-12 for regular octahedra. © 2010 Springer Science+Business Media, LLC.

Cite

CITATION STYLE

APA

Gravel, S., Elser, V., & Kallus, Y. (2011). Upper Bound on the Packing Density of Regular Tetrahedra and Octahedra. Discrete and Computational Geometry, 46(4), 799–818. https://doi.org/10.1007/s00454-010-9304-x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free