The type-A response regulator, ARR15, acts as a negative regulator in the cytokinin-mediated signal transduction in Arabidopsis thaliana

145Citations
Citations of this article
89Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The Arabidopsis thaliana AHK4 histidine kinase (also known as CRE1 or WOL) acts as a cytokinin signal transducer, presumably, in concert with downstream components, such as histidine-containing phosphotransfer factors (AHPs) and response regulators (ARRs), through the histidine-to-aspartate (His→Asp) phosphorelay. Among 10 members of the type-A ARR family, the cytokinin-induced expression of ARR15 in roots is selectively impaired in the cre1-1 mutant, which carries a mutation in the AHK4 gene, suggesting a link between this type-A response regulator and the AHK4-mediated cytokinin signal transduction in roots. To address this issue further, we characterized a T-DNA insertion mutant of ARR15, and also constructed transgenic lines (referred to as ARR15-ox) that overexpress the ARR15 gene in a manner independent of cytokinin. While the T-DNA insertion mutant (arr15-1) showed no apparent phenotype, the cytokinin-independent overexpression of ARR15 in ARR15-ox plants resulted in a reduced sensitivity toward exogenously applied cytokinin, not only in elongation of roots in plants, but also in green callus formation (or shoot formation) in explants. Cytokinin-induced expressions of certain type-A ARRs were also down-regulated in ARR15-ox plants. These results support the view that ARR15 acts as a repressor that mediates a negative feedback loop in the cytokinin and AHK4-mediated His→Asp phosphorelay.

Cite

CITATION STYLE

APA

Kiba, T., Yamada, H., Sato, S., Kato, T., Tabata, S., Yamashino, T., & Mizuno, T. (2003). The type-A response regulator, ARR15, acts as a negative regulator in the cytokinin-mediated signal transduction in Arabidopsis thaliana. Plant and Cell Physiology, 44(8), 868–874. https://doi.org/10.1093/pcp/pcg108

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free