Fluorescence and FTIR study of the pressure-induced denaturation of bovine pancreas trypsin

43Citations
Citations of this article
20Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The pressure denaturation of trypsin from bovine pancreas was investigated by fluorescence spectroscopy in the pressure range 0.1-700 MPa and by FTIR spectroscopy up to 1000 MPa. The tryptophan fluorescence measurements indicated that at pH 3.0 and 0 °C the pressure denaturation of trypsin is reversible but with a large hysteresis in the renaturation profile. The standard volume changes upon denaturation and renaturation are - 78 mL·mol-1 and +73 mL·mol-1, respectively. However, the free energy calculated from the data in the compression and decompression directions are quite different in absolute values with +3616 kJ·mol-1 for the denaturation and -5 kJ·mol-1 for the renaturation. For the pressure denaturation at pH 7.3 the tryptophan fluorescence measurement and enzymatic activity assays indicated that the pressure denaturation of trypsin is irreversible. Interestingly, the study on 8-anilinonaphthalene-1-sulfonate (ANS) binding to trypsin under pressure leads to the opposite conclusion that the denaturation is reversible. FTIR spectroscopy was used to follow the changes in secondary structure. The pressure stability data found by fluorescence measurements are confirmed but the denaturation was irreversible at low and high pH in the FTIR investigation. These findings confirm that the trypsin molecule has two domains: one is related to the enzyme active site and the tryptophan residues; the other is related to the ANS binding. This is in agreement with the study on urea unfolding of trypsin and the knowledge of the molecular structure of trypsin.

Cite

CITATION STYLE

APA

Ruan, K., Lange, R., Meersman, F., Heremans, K., & Balny, C. (1999). Fluorescence and FTIR study of the pressure-induced denaturation of bovine pancreas trypsin. European Journal of Biochemistry, 265(1), 79–85. https://doi.org/10.1046/j.1432-1327.1999.00665.x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free