Bootstrap inference when using multiple imputation

281Citations
Citations of this article
265Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Many modern estimators require bootstrapping to calculate confidence intervals because either no analytic standard error is available or the distribution of the parameter of interest is nonsymmetric. It remains however unclear how to obtain valid bootstrap inference when dealing with multiple imputation to address missing data. We present 4 methods that are intuitively appealing, easy to implement, and combine bootstrap estimation with multiple imputation. We show that 3 of the 4 approaches yield valid inference, but that the performance of the methods varies with respect to the number of imputed data sets and the extent of missingness. Simulation studies reveal the behavior of our approaches in finite samples. A topical analysis from HIV treatment research, which determines the optimal timing of antiretroviral treatment initiation in young children, demonstrates the practical implications of the 4 methods in a sophisticated and realistic setting. This analysis suffers from missing data and uses the g-formula for inference, a method for which no standard errors are available.

Cite

CITATION STYLE

APA

Schomaker, M., & Heumann, C. (2018). Bootstrap inference when using multiple imputation. Statistics in Medicine, 37(14), 2252–2266. https://doi.org/10.1002/sim.7654

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free