Crop disease leaf image segmentation (CDLIS) is the premise of disease detection, disease type recognition and disease degree evaluation. Various convolutional neural networks (CNN) and their modified models have been provided for CDLIS, but their training time is very long. Aiming at the low segmentation accuracy of various diseased leaf images caused by different sizes, colors, shapes, blurred speckle edges and complex backgrounds of traditional U-Net, a lightweight multi-scale extended U-Net (LWMSDU-Net) is constructed for CDLIS. It is composed of encoding and decoding sub-networks. Encoding the sub-network adopts multi-scale extended convolution, the decoding sub-network adopts a deconvolution model, and the residual connection between the encoding module and the corresponding decoding module is employed to fuse the shallow features and deep features of the input image. Compared with the classical U-Net and multi-scale U-Net, the number of layers of LWMSDU-Net is decreased by 1 with a small number of the trainable parameters and less computational complexity, and the skip connection of U-Net is replaced by the residual path (Respath) to connect the encoder and decoder before concatenating. Experimental results on a crop disease leaf image dataset demonstrate that the proposed method can effectively segment crop disease leaf images with an accuracy of 92.17%.
CITATION STYLE
Xu, C., Yu, C., & Zhang, S. (2022). Lightweight Multi-Scale Dilated U-Net for Crop Disease Leaf Image Segmentation. Electronics (Switzerland), 11(23). https://doi.org/10.3390/electronics11233947
Mendeley helps you to discover research relevant for your work.