Fabrication of a novel micron scale Y-structure-based chiral metamaterial: Simulation and experimental analysis of its chiral and negative index properties in the terahertz and microwave regimes

13Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In this report, we describe the fabrication of a chiral metamaterial based on a periodic array of Y-shaped Al structures on a dielectric Mylar substrate. The unit cell dimensions of the Y-structure are ∼100 μm on a side with 8 μm linewidths. The fabricated Y-structure elements are characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Quantitative elemental analyses were carried out on both the Y-structure, comprised of Al and its oxide, as well as adjacent regions of the underlying mylar substrate using the energy dispersive X-ray spectroscopy (EDS) capability of the SEM. Finite-Difference Time-Domain (FDTD) calculations of the negative index of refraction for a 3D wedge of multiple layers of the 2D metamaterials showed that these metamaterials possess double negative (-μ, -ε) electromagnetic bulk properties at THz frequencies. The same negative index of refraction was determined for a wedge comprised of appropriately scaled larger Y-structures simulated in the microwave region. This double negative property was confirmed experimentally by microwave measurements on a 3D wedge comprised of stacked and registered Y-structure sheets. © 2007 Wiley-Liss, Inc.

Cite

CITATION STYLE

APA

Wongkasem, N., Akyurtlu, A., Marx, K. A., Goodhue, W. D., Li, J., Dong, Q., & Ada, E. T. (2007). Fabrication of a novel micron scale Y-structure-based chiral metamaterial: Simulation and experimental analysis of its chiral and negative index properties in the terahertz and microwave regimes. Microscopy Research and Technique, 70(6), 497–505. https://doi.org/10.1002/jemt.20473

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free