In this paper, the ductile behaviour of two different low carbon steels, C-Mn-440 and interstitial free high strength (IFHS), is presented using a continuum damage mechanics (CDM) approach. The damage growth law is adopted to predict the ductile response of the specified materials. Cyclic load-unload tensile tests in combination with standard uniaxial tensile tests helped to estimate the necessary parameters: damage variable, D, fracture stress, σf, threshold damage strain, ϵ0, and strain hardening exponent, n, required to apply the model. The strain hardening exponent estimated from the cyclic test data is used to predict the damage variable, D. Increase of damage shows deterioration of the hardening exponent magnitudes varying nonlinearly. The simulated flow curve by the damage variable, D, corresponding to the load-unload test is observed to approximate the experimental true stress-true strain curve very closely up to the onset of necking for both the materials. The experimental values of D, as obtained for C-Mn-440 and IFHS steels, vary from 0.10 to 0.44 and 0.09 to 0.45, respectively. The critical damage parameters, DC, for the considered materials are 0.44 and 0.45, representing their good ductile response.
CITATION STYLE
Ajit, K. P., Gautam, A., & Sarkar, P. K. (2016). Ductile behaviour characterization of low carbon steel: A CDM approach. Strojniski Vestnik/Journal of Mechanical Engineering, 62(5), 299–306. https://doi.org/10.5545/sv-jme.2015.3200
Mendeley helps you to discover research relevant for your work.