We explain several anomalous phenomena observed in the pseudogap phase of hole-doped cuprates based on the recently proposed spin-vortex superconductivity theory. In this theory, doped-holes become almost immobile small polarons, and spin-vortices are formed with those small polarons as their centers. A Hartree-Fock field for conduction electrons that is optimized for the interaction energy of local moments is derived; it contains a fictitious magnetic field arising from spin-vortices, and yields current carrying states. The obtained currents are loop currents around spin-vortices, i.e., the spin-vortex-induced loop currents (SVILCs), and a collection of them produces a macroscopic current. The SVILC explains (1) nonzero Kerr rotation in zero-magnetic field after exposed in a strong magnetic field; (2) the change of the sign of the Hall coefficient with temperature change; (3) the suppression of superconductivity in the x=1/8 static-stripe ordered sample; and (4) a large anomalous Nernst signal, including its sign-change with temperature change. We show that the hourglass-shaped magnetic excitation spectrum is the evidence for the existence of spin-vortices. We further argue that the "Fermi-arc" in the ARPES is a support for the presence of localized moments in the bulk; a disconnected arc-shaped Fermi surface is obtained by assuming an antiferromagnetic interaction between the localized moments in the bulk and itinerant electrons in the surface region. © 2011 The Author(s).
CITATION STYLE
Hidekata, R., & Koizumi, H. (2011). Spin-vortices and spin-vortex-induced loop currents in the pseudogap phase of cuprates. Journal of Superconductivity and Novel Magnetism, 24(8), 2253–2267. https://doi.org/10.1007/s10948-011-1194-5
Mendeley helps you to discover research relevant for your work.