Image-Based Artefact Removal in Laser Scanning Microscopy

1Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Recent developments in laser scanning microscopy have greatly extended its applicability in cancer imaging beyond the visualization of complex biology, and opened up the possibility of quantitative analysis of inherently dynamic biological processes. However, the physics of image acquisition intrinsically means that image quality is subject to a tradeoff between a number of imaging parameters, including resolution, signal-to-noise ratio, and acquisition speed. We address the problem of geometric distortion, in particular, jaggedness artefacts that are caused by the variable motion of the microscope laser, by using a combination of image processing techniques. Image restoration methods have already shown great potential for post-acquisition image analysis. The performance of our proposed image restoration technique was first quantitatively evaluated using phantom data with different textures, and then qualitatively assessed using in vivo biological imaging data. In both cases, the presented method, comprising a combination of image registration and filtering, is demonstrated to have substantial improvement over state-of-the-art microscopy acquisition methods.

Cite

CITATION STYLE

APA

Papiez, B. W., Markelc, B., Brown, G., Muschel, R. J., Brady, S. M., & Schnabel, J. A. (2020). Image-Based Artefact Removal in Laser Scanning Microscopy. IEEE Transactions on Biomedical Engineering, 67(1), 79–87. https://doi.org/10.1109/TBME.2019.2908345

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free