The connection between marine biogenic dimethyl sulfide (DMS) and the formation of aerosol particles in the Arctic atmosphere was evaluated by analyzing atmospheric DMS mixing ratio, aerosol particle size distribution and aerosol chemical composition data that were concurrently collected at Ny-Ålesund, Svalbard (78.5° N, 11.8° E), during April and May 2015. Measurements of aerosol sulfur (S) compounds showed distinct patterns during periods of Arctic haze (April) and phytoplankton blooms (May). Specifically, during the phytoplankton bloom period the contribution of DMS-derived SO2-4 to the total aerosol SO2-4 increased by 7-fold compared with that during the proceeding Arctic haze period, and accounted for up to 70% of fine SO2-4 particles (<2.5 μm in diameter). The results also showed that the formation of submicron SO2-4 aerosols was significantly associated with an increase in the atmospheric DMS mixing ratio. More importantly, two independent estimates of the formation of DMS-derived SO2-4 aerosols, calculated using the stable S-isotope ratio and the non-seasalt SO2-4 = methanesulfonic acid ratio, respectively, were in close agreement, providing compelling evidence that the contribution of biogenic DMS to the formation of aerosol particles was substantial during the Arctic phytoplankton bloom period.
CITATION STYLE
Park, K. T., Jang, S., Lee, K., Yoon, Y. J., Kim, M. S., Park, K., … Shin, K. H. (2017). Observational evidence for the formation of DMS-derived aerosols during Arctic phytoplankton blooms. Atmospheric Chemistry and Physics, 17(15), 9665–9675. https://doi.org/10.5194/acp-17-9665-2017
Mendeley helps you to discover research relevant for your work.