Optimizing NV magnetometry for Magnetoneurography and Magnetomyography applications

14Citations
Citations of this article
27Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Magnetometers based on color centers in diamond are setting new frontiers for sensing capabilities due to their combined extraordinary performances in sensitivity, bandwidth, dynamic range, and spatial resolution, with stable operability in a wide range of conditions ranging from room to low temperatures. This has allowed for its wide range of applications, from biology and chemical studies to industrial applications. Among the many, sensing of bio-magnetic fields from muscular and neurophysiology has been one of the most attractive applications for NV magnetometry due to its compact and proximal sensing capability. Although SQUID magnetometers and optically pumped magnetometers (OPM) have made huge progress in Magnetomyography (MMG) and Magnetoneurography (MNG), exploring the same with NV magnetometry is scant at best. Given the room temperature operability and gradiometric applications of the NV magnetometer, it could be highly sensitive in the (Formula presented.) -range even without magnetic shielding, bringing it close to industrial applications. The presented work here elaborates on the performance metrics of these magnetometers to the state-of-the-art techniques by analyzing the sensitivity, dynamic range, and bandwidth, and discusses the potential benefits of using NV magnetometers for MMG and MNG applications.

Cite

CITATION STYLE

APA

Zhang, C., Zhang, J., Widmann, M., Benke, M., Kübler, M., Dasari, D., … Wrachtrup, J. (2023). Optimizing NV magnetometry for Magnetoneurography and Magnetomyography applications. Frontiers in Neuroscience, 16. https://doi.org/10.3389/fnins.2022.1034391

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free