An agent-based simulation of the spread of dengue fever

6Citations
Citations of this article
36Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Vector-borne diseases (VBDs) account for more than 17% of all infectious diseases, causing more than 700,000 annual deaths. Lack of a robust infrastructure for timely collection, reporting, and analysis of epidemic data undermines necessary preparedness and thus posing serious health challenges to the general public. By developing a simulation framework that models population dynamics and the interactions of both humans and mosquitoes, we may enable epidemiologists to analyze and forecast the transmission and spread of an infectious disease in specific areas. We extend the traditional SEIR (Susceptible, Exposed, Infectious, Recovered) mathematical model and propose an Agent-based model to analyze the interactions between the host and the vector using: (i) our proposed algorithm to compute vector density, based on the reproductive behavior of the vector; and (ii) agent interactions to simulate transmission of virus in a spatio-temporal environment, and forecast the spread of the disease in a given area over a period of time. Our simulation results identify several expected dengue cases and their direction of spread, which can help in detecting epidemic outbreaks. Our proposed framework provides visualization and forecasting capabilities to study the epidemiology of a certain region and aid public health departments in emergency preparedness.

Cite

CITATION STYLE

APA

Mahmood, I., Jahan, M., Groen, D., Javed, A., & Shafait, F. (2020). An agent-based simulation of the spread of dengue fever. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 12139 LNCS, pp. 103–117). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-030-50420-5_8

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free