Molecular mechanism of the enhanced virulence of 2009 pandemic Influenza A (H1N1) virus from D222G mutation in the hemagglutinin: A molecular modeling study

16Citations
Citations of this article
30Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

D222G mutation of the hemagglutinin (HA) is of special interest because of its close association with the enhanced virulence of 2009 pandemic influenza A (H1N1) virus through the increased binding affinity to a2,3-linked sialylated glycan receptors. However, there is still a lack of detailed understanding about the molecular mechanism of this enhanced virulence. Here, molecular dynamics simulation and binding free energy calculation were performed to explore the altered glycan receptor binding mechanism of HA upon the D222G mutation by studying the interaction of one a2,3-linked sialylglycan (sequence: SIA-GAL-NAG) with the wild type and D222G mutated HA. The binding free energy calculation based on the molecular mechanics generalized Born surface area (MM-GBSA) method indicates that the D222G mutated HA has a much stronger binding affinity with the studied a2,3-linked glycan than the wild type. This is consistent with the experimental result. The increased binding free energy of D222G mutant mainly comes from the increased energy contribution of Gln223. The structural analysis proves that the altered electrostatic potential of receptor binding domain (RBD) and the increased flexibility of 220-loop are the essential reasons leading to the increased affinity of HA to a2,3-linked sialic acid glycans. The obtained results of this study have allowed a deeper understanding of the receptor recognition mechanism and the pathogenicity of influenza virus, which will be valuable to the structure-based inhibitors design targeting influenza virus entry process. © Springer-Verlag 2012.

References Powered by Scopus

Comparison of simple potential functions for simulating liquid water

34862Citations
N/AReaders
Get full text

Molecular dynamics with coupling to an external bath

27069Citations
N/AReaders
Get full text

Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes

18962Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Targeting tyrosine kinase inhibitor-resistant non-small cell lung cancer by inducing epidermal growth factor receptor degradation via methionine 790 oxidation

75Citations
N/AReaders
Get full text

Mutations associated with severity of the pandemic influenza A(H1N1)pdm09 in humans: a systematic review and meta-analysis of epidemiological evidence

40Citations
N/AReaders
Get full text

Influenza A virus hemagglutinin mutations associated with use of neuraminidase inhibitors correlate with decreased inhibition by anti-influenza antibodies

20Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Pan, D., Xue, W., Wang, X., Guo, J., Liu, H., & Yao, X. (2012). Molecular mechanism of the enhanced virulence of 2009 pandemic Influenza A (H1N1) virus from D222G mutation in the hemagglutinin: A molecular modeling study. Journal of Molecular Modeling, 18(9), 4355–4366. https://doi.org/10.1007/s00894-012-1423-2

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 10

50%

Researcher 6

30%

Professor / Associate Prof. 4

20%

Readers' Discipline

Tooltip

Agricultural and Biological Sciences 8

35%

Biochemistry, Genetics and Molecular Bi... 7

30%

Chemistry 4

17%

Medicine and Dentistry 4

17%

Save time finding and organizing research with Mendeley

Sign up for free