MAPK-activated protein kinase-2 (MK2)-mediated formation and phosphorylation-regulated dissociation of the signal complex consisting of p38, MK2, Akt, and Hsp27

87Citations
Citations of this article
63Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The p38 MAPK and heat shock protein 27 (hsp27) form a signaling complex with serine/threonine kinase Akt and MAPK-activated protein kinase-2 (MK2), which plays an important role in controlling stress-induced apoptosis and reorganizing actin cytoskeleton. However, regulation of the complex is poorly understood. In this study, the interaction between p38 and hsp27 was visualized in single living L929 cells using fluorescence resonance energy transfer technology, while their association with Akt was examined by immunoprecipitation analysis. Under normal growth conditions, p38 kinase constitutively interacts with hsp27. When cells were exposed to H2O2 or stimulated by arachidonic acid, this interaction was disrupted. However, inhibition of the activation of p38 and Akt by selective inhibitors or overexpression of the kinase-dead mutant of p38 diminished such effects. Furthermore, mutation of phosphorylation sites of hsp27 renders the interaction resistant to H 2O2 and arachidonic acid. It was interesting to find that the interaction disappeared in the cells from MK2-knock-out mice or the cells treated with lemptomycin B that blocks export of MK2 from nucleus to cytosol. However, MK2 is not required for the association of hsp27 with Akt. This study suggests that MK2 mediates the incorporation of p38 into the pre-existing complex of hsp27 with Akt. Phosphorylation of hsp27 finally breaks the signaling complex. © 2006 by The American Society for Biochemistry and Molecular Biology, Inc.

Cite

CITATION STYLE

APA

Zheng, C., Lin, Z., Zhao, Z. J., Yang, Y., Niu, H., & Shen, X. (2006). MAPK-activated protein kinase-2 (MK2)-mediated formation and phosphorylation-regulated dissociation of the signal complex consisting of p38, MK2, Akt, and Hsp27. Journal of Biological Chemistry, 281(48), 37215–37226. https://doi.org/10.1074/jbc.M603622200

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free