Highly selective SGLT2 inhibitor dapagliflozin reduces seizure activity in pentylenetetrazol-induced murine model of epilepsy

37Citations
Citations of this article
59Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Worldwide, over 10 million individuals suffer from drug-resistant epilepsy. New therapeutic strategies are needed to address this debilitating disease. Inhibition of sodium-glucose linked transporters (SGLTs), which are variably expressed in the brain, has been demonstrated to reduce seizure activity in murine models of epilepsy. Here we investigated the effects of dapagliflozin, a highly competitive SGLT2 inhibitor currently used as a drug for diabetes mellitus, on seizure activity in rats with pentylenetetrazol (PTZ) induced seizures. Methods: Laboratory rats (n=48) were evenly randomized into two experiments, each with four study arms: (1) a vehicle-treated (placebo) arm infused with saline; (2) a control arm infused with PTZ; (3) a treatment arm with PTZ and dapagliflozin at 75mg/kg, and (4) another treatment arm with PTZ and dapagliflozin at 150mg/kg. Study subjects were assessed for seizures either via EEG as measured by spike wave percentage (SWP), or clinically via Racine's scales scores (RSS) and time to first myoclonic jerk (TFMJ). Results: Rats treated with dapagliflozin had lower mean SWP on EEG (20.4% versus 75.3% for untreated rats). Behaviorally, treatment with dapagliflozin improved means RSS (2.33 versus 5.5) and mean TFMJ (68.3 versus 196.7s). All of these findings were statistically significant with p-values of <0.0001. There was a trend towards even better seizure control with the higher dose of dapagliflozin at 150mg/kg, however this was not consistently statistically significant. Conclusions: Dapagliflozin decreased seizure activity in rats with PTZ-induced seizures. This may be explained by the anti-seizure effects of decreased glucose availability and a reduction in sodium transport across neuronal membranes which can confer a stabilizing effect against excitability and unwanted depolarization. The potential clinical role of dapagliflozin and other SGLT2 inhibitors as anti-seizure medications should be further explored.

Cite

CITATION STYLE

APA

Erdogan, M. A., Yusuf, D., Christy, J., Solmaz, V., Erdogan, A., Taskiran, E., & Erbas, O. (2018). Highly selective SGLT2 inhibitor dapagliflozin reduces seizure activity in pentylenetetrazol-induced murine model of epilepsy. BMC Neurology, 18(1). https://doi.org/10.1186/s12883-018-1086-4

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free