Five-aza-2′-deoxycytidine-induced hypomethylation of cholesterol 25-hydroxylase gene is responsible for cell death of myelodysplasia/leukemia cells

19Citations
Citations of this article
24Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

DNA methyltransferase inhibitors (DNMT inhibitors) are administered for high-risk MDS, but their action mechanisms are not fully understood. Hence, we performed a genome-wide DNA methylation assay and focused on cholesterol 25-hydroxylase (CH25H) among the genes whose expression was up-regulated and whose promoter region was hypomethylated after decitabine (DAC) treatment in vitro. CH25H catalyzes hydroxylation of cholesterol and produces 25-hydroxycholesterol (25-OHC). Although CH25H mRNA expression level was originally low in MDS/leukemia cell lines, exposure to DNMT inhibitors enhanced CH25H mRNA expression. The promoter region of CH25H was originally hypermethylated in HL-60 and MDS-L cells, but DAC treatment induced their hypomethylation together with increased CH25H mRNA expression, activation of CH25H-oxysterol pathway, 25-OHC production and apoptotic cell death. We further confirmed that normal CD34-positive cells revealed hypomethylated status of the promoter region of CH25H gene. CH25H-knockdown by transfection of shRNA lentiviral vector into the cell lines partially protected the cells from DAC-induced cell death. Exogenous addition of 25-OHC suppressed leukemic cell growth. The present study raises a possibility that DNMT inhibitors activate CH25H-oxysterol pathway by their hypomethylating mechanism and induce leukemic cell death. Further investigations of the promoter analysis of CH25H gene and therapeutic effects of DNMT inhibitors on MDS/leukemia will be warranted.

Cite

CITATION STYLE

APA

Tsujioka, T., Yokoi, A., Itano, Y., Takahashi, K., Ouchida, M., Okamoto, S., … Tohyama, K. (2015). Five-aza-2′-deoxycytidine-induced hypomethylation of cholesterol 25-hydroxylase gene is responsible for cell death of myelodysplasia/leukemia cells. Scientific Reports, 5. https://doi.org/10.1038/srep16709

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free