Natural killer (NK) cells have great potential for improving cancer immunotherapy. Adoptive NK cell transfer, an adoptive immunotherapy, represents a promising nontoxic anticancer therapy. However, existing data indicate that tumor cells can effectively escape NK cell-mediated apoptosis through immunosuppressive effects in the tumor microenvironment, and the therapeutic activity of adoptive NK cell transfer is not as efficient as anticipated. Transforming growth factor-beta (TGF-β) is a potent immunosuppressant. Genetic and epigenetic events that occur during mammary tumorigenesis circumvent the tumor-suppressing activity of TGF-β, thereby permitting late-stage breast cancer cells to acquire an invasive and metastatic phenotype in response to TGF-β. To block the TGF-β signaling pathway, NK cells were genetically modified with a dominant-negative TGF-β type II receptor by optimizing electroporation using the Amaxa Nucleofector system. These genetically modified NK cells were insensitive to TGF-β and resisted the suppressive effect of TGF-β on MCF-7 breast cancer cells in vitro. Our results demonstrate that blocking the TGF-β signaling pathway to modulate the tumor microenvironment can improve the antitumor activity of adoptive NK cells in vitro, thereby providing a new rationale for the treatment of breast cancer.
CITATION STYLE
Zhao, Y., Hu, J., Li, R., Song, J., Kang, Y., Liu, S., & Zhang, D. (2015). Enhanced NK cell adoptive antitumor effects against breast cancer in vitro via blockade of the transforming growth factor-β signaling pathway. OncoTargets and Therapy, 8, 1553–1559. https://doi.org/10.2147/OTT.S82616
Mendeley helps you to discover research relevant for your work.