Uniqueness of Integrable Solutions ∇ζ = G ζ, ζ∣ Γ = 0 for Integrable Tensor‐Coefficients G and Applications to Elasticity

  • Lankeit J
  • Neff P
  • Pauly D
N/ACitations
Citations of this article
N/AReaders
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Let $\Omega\subset R^N$ be bounded Lipschitz and $\emptyseteq\Gamma\subset \partial\Omega$ relatively open. We show that the solution to the linear first order system 1 : vanishes if $G \in {\rm L}^1(\Omega;{\rm I\!R}^{(N \times N)\times N})$ and $\zeta \in {\rm W}^{1,1}(\Omega;{\rm I\!R}^N)$ , (e.g. $\zeta \in L^2, G \in L^2$ ). We prove to be a norm if $P \in {\rm L}^\infty (\Omega;{\rm I\!R}^{3\times 3})$ with ${\rm Curl}\; P \in {\rm L}^p (\Omega;{\rm I\!R}^{3\times 3})$ , ${\rm Curl}\; P^{-1} \in {\rm L}^q (\Omega;{\rm I\!R}^{3\times 3})$ for some p, q > 1 with 1/p + 1/q = 1 and ${\rm det}P \geq c^{+} > 0$ . We give a new proof for the so called ‘in‐finitesimal rigid displacement lemma’ in curvilinear coordinates: Let $\Phi \in {\rm H}^1(\Omega;{\rm I\!R}^{3}), \Omega \in {\rm I\!R}^{3}$ , satisfy ${\rm sym} (abla\Phi^{\rm T} abla\Psi) = 0$ for some $\Psi \in {\rm W}^{1,\infty} (\Omega;{\rm I\!R}^{3}) \cap {\rm H}^2 (\Omega;{\rm I\!R}^{3})$ with ${\rm det}abla\Psi \geq c^{+} > 0$ . Then there are $a \in {\rm I\!R}^{3}$ and a constant skew‐symmetric matrix $A \in {\rm so}(3)$ , such that $\Phi = A\Psi +a$ . (© 2013 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Cite

CITATION STYLE

APA

Lankeit, J., Neff, P., & Pauly, D. (2013). Uniqueness of Integrable Solutions ∇ζ = G ζ, ζ∣ Γ = 0 for Integrable Tensor‐Coefficients G and Applications to Elasticity. PAMM, 13(1), 361–362. https://doi.org/10.1002/pamm.201310176

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free