Seeds of many species do not germinate immediately after dispersal, but instead may remain indefinitely in a dormant but viable state. Although it is well established that seeds often exhibit diversified patterns of dormancy and germination, the causes and consequences of this variation remain poorly understood. In this study, we investigate the extent to which seed genotypes of the desert mustard Lesquerella fendleri differentially germinate and establish under experimental conditions in a greenhouse. We used a two-way factorial design to compare genotypes of Lesquerella plants derived from seeds that germinated and established at different times and under different soil water regimes. Overall allozyme allele frequencies of Lesquerella plants varied significantly with both germination time and initial soil water availability. Single-locus heterozygosity analyses revealed that seeds sown into initially low water conditions produced plants that were significantly more heterozygous than plants derived from seeds experiencing constantly high water conditions, but heterozygosity did not differ significantly among plants originating from early- and late-germinating seeds. This is the first study to experimentally demonstrate that germination timing and environment can significantly affect the genetic structure of emerging plant populations. The study suggests that germination and survival behavior may (1) play an important role in generating and maintaining the genetic structure of natural plant populations and (2) set the stage for subsequent evolution.
CITATION STYLE
Cabin, R. J., Evans, A. S., & Mitchell, R. J. (1997). Genetic effects of germination timing and environment: An experimental investigation. Evolution, 51(5), 1427–1434. https://doi.org/10.1111/j.1558-5646.1997.tb01466.x
Mendeley helps you to discover research relevant for your work.