This study determined whether doxorubicin, an anticancer agent, impairs endothelium-dependent relaxations mediated by nitric oxide (NO) and endothelium-derived hyperpolarization (EDH) in the mesenteric artery and, if so, the mechanism underlying the protective effect of red wine polyphenols (RWPs), a rich natural source of antioxidants. Male Wistar rats were assigned into 4 groups: control, RWPs, doxorubicin, and doxorubicin + RWPs. Vascular reactivity was assessed in organ chambers; the vascular formation of reactive oxygen species (ROS) using dihydroethidine and the expression levels of small and intermediate conductance calcium-activated potassium channels (S K Ca, I K Ca) and connexin 40 (Cx40), which are involved in EDH-type relaxations, endothelial NO synthase (eNOS), angiotensin II, and AT1 receptors by immunofluorescence. The doxorubicin treatment impaired EDH-mediated relaxations, whereas those mediated by NO were minimally affected. This effect was associated with reduced expression levels of S K Ca, I K Ca, and Cx40, increased expression levels of eNOS, angiotensin II, and AT1 receptors, and formation of ROS in mesenteric arteries. RWPs prevented both the doxorubicin-induced blunted EDH-type relaxations and the increased vascular oxidative stress, and they improved the expression levels of target proteins. These findings suggest that polyphenol-rich natural products might be of interest in the management of doxorubicin-induced vascular injury possibly by improving the vascular angiotensin system. © 2013 Noureddine Idris-Khodja et al.
CITATION STYLE
Idris-Khodja, N., Di Marco, P., Farhat, M., Geny, B., & Schini-Kerth, V. B. (2013). Grape-derived polyphenols prevent doxorubicin-induced blunted EDH-mediated relaxations in the rat mesenteric artery: Role of ROS and angiotensin II. Evidence-Based Complementary and Alternative Medicine, 2013. https://doi.org/10.1155/2013/516017
Mendeley helps you to discover research relevant for your work.