The precise estimation of the location of phase transitions is an essential task in the study of many condensed matter systems. A recently developed technique denoted interface pinning (IP) [U. R. Pedersen, F. Hummel, G. Kresse, G. Kahl, and C. Dellago, Phys. Rev. B. 88, 094101 (2013); U. R. Pedersen, J. Chem. Phys. 139, 104102 (2013)] can accurately estimate the location of fluid-solid transition using the NPzT ensemble for single-component systems by computing the free energy difference between a solid and a fluid. The IP method is extended here to be applicable to different ensembles for both single-component systems and binary mixtures. A more general scheme is also proposed for the extrapolation of properties targeting coexistence conditions. This framework is used to estimate the coexistence pressure for the isotropic-rotator phase transition for three single-component polyhedral systems and to estimate isotropic-crystal coexistence compositions for a binary mixture of hard cubes and spheres. In addition, by exploring various choices for the order parameter used to distinguish between the isotropic and ordered phases, it is found that volume provides a reasonable alternative to translational order parameters which can be either more expensive to calculate or unable to pin a two-phase interfacial state.
CITATION STYLE
Thapar, V., & Escobedo, F. A. (2014). Extensions of the interfacial pinning method and application to hard core systems. Journal of Chemical Physics, 141(12). https://doi.org/10.1063/1.4896054
Mendeley helps you to discover research relevant for your work.