Genomics methodologies have advanced to the extent that it is nowpossible to interrogate the gene expression in a single cell but proteomics has traditionally lagged behind and required much greater cellular input and was not quantitative. Coupling protein with gene expression data is essential for understanding how cell behavior is regulated. Advances primarily in mass spectrometry have, however, greatly improved the sensitivity of proteomics methods over the last decade and the outcome of proteomic analyses can nowalso be quantified. Nevertheless, it is still difficult to obtain sufficient tissue from staged mammalian embryos to combine proteomic and genomic analyses. Recent developments in pluripotent stem cell biology have in part addressed this issue by providing surrogate scalable cell systems in which early developmental events can be modeled. Here we present an overview of current proteomics methodologies and the kind of information this can provide on the biology of human and mouse pluripotent stem cells. © 2012 Cold Spring Harbor Laboratory Press; all rights reserved.
CITATION STYLE
van Hoof, D., Krijgsveld, J., & Mummery, C. (2012). Proteomic analysis of stem cell differentiation and early development. Cold Spring Harbor Perspectives in Biology, 4(3). https://doi.org/10.1101/cshperspect.a008177
Mendeley helps you to discover research relevant for your work.