Nonfullerene-acceptor-based organic solar cells (NFA-OSCs) are now set off to the 20% power conversion efficiency milestone. To achieve this, minimizing all loss channels, including nonradiative photovoltage losses, seems a necessity. Nonradiative recombination, to a great extent, is known to be an inherent material property due to vibrationally induced decay of charge-transfer (CT) states or their back electron transfer to the triplet excitons. Herein, it is shown that the use of a new conjugated nitroxide radical polymer with 2,2,6,6-tetramethyl piperidine-1-oxyl side groups (GDTA) as an additive results in an improvement of the photovoltaic performance of NFA-OSCs based on different active layer materials. Upon the addition of GDTA, the open-circuit voltage (VOC), fill factor (FF), and short-circuit current density (JSC) improve simultaneously. This approach is applied to several material systems including state-of-the-art donor/acceptor pairs showing improvement from 15.8% to 17.6% (in the case of PM6:Y6) and from 17.5% to 18.3% (for PM6:BTP-eC9). Then, the possible reasons behind the observed improvements are discussed. The results point toward the suppression of the CT state to triplet excitons loss channel. This work presents a facile, promising, and generic approach to further improve the performance of NFA-OSCs.
CITATION STYLE
Shi, F., Guo, P., Qiao, X., Yao, G., Zhang, T., Lu, Q., … Xia, Y. (2023). A Nitroxide Radical Conjugated Polymer as an Additive to Reduce Nonradiative Energy Loss in Organic Solar Cells. Advanced Materials, 35(23). https://doi.org/10.1002/adma.202212084
Mendeley helps you to discover research relevant for your work.